Uncovering phonological and orthographic selectivity across the reading network using fMRI-RA

Laurie S. Glezer, Guinevere Eden, Xiong Jiang, Megan Luetje, Eileen Napoliello, Judy Kim, and Maximilian Riesenhuber (2016)


Reading has been shown to rely on a dorsal brain circuit involving the temporoparietal cortex (TPC) for grapheme-to-phoneme conversion of novel words (Pugh et al., 2001), and a ventral stream involving left occipitotemporal cortex (OTC) (in particular in the so-called "visual word form area", VWFA) for visual identification of familiar words. In addition, portions of the inferior frontal cortex (IFC) have been posited to be an output of the dorsal reading pathway involved in phonology. While this dorsal versus ventral dichotomy for phonological and orthographic processing of words is widely accepted, it is not known if these brain areas are actually strictly sensitive to orthographic or phonological information. Using an fMRI rapid adaptation technique we probed the selectivity of the TPC, OTC, and IFC to orthographic and phonological features during single word reading. We found in two independent experiments using different task conditions in adult normal readers, that the TPC is exclusively sensitive to phonology and the VWFA in the OTC is exclusively sensitive to orthography. The dorsal IFC (BA 44), however, showed orthographic but not phonological selectivity. These results support the theory that reading involves a specific phonological-based temporoparietal region and a specific orthographic-based ventral occipitotemporal region. The dorsal IFC, however, was not sensitive to phonological processing, suggesting a more complex role for this region.