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Freedman, David J., Maximilian Riesenhuber, Tomaso Poggio,
and Earl K. Miller. Visual categorization and the primate prefrontal
cortex: neurophysiology and behavior.J Neurophysiol 88: 929–941,
2002; 10.1152/jn.00040.2002. The ability to group stimuli into mean-
ingful categories is a fundamental cognitive process. To explore its
neuronal basis, we trained monkeys to categorize computer-generated
stimuli as “cats” and “dogs.” A morphing system was used to sys-
tematically vary stimulus shape and precisely define a category
boundary. Psychophysical testing and analysis of eye movements
suggest that the monkeys categorized the stimuli by attending to
multiple stimulus features. Neuronal activity in the lateral prefrontal
cortex reflected the category of visual stimuli and changed with
learning when a monkey was retrained with the same stimuli assigned
to new categories. Further, many neurons showed activity that ap-
peared to reflect the monkey’s decision about whether two stimuli
were from the same category or not. These results suggest that the
lateral prefrontal cortex is an important part of the neuronal circuitry
underlying category learning and category-based behaviors.

I N T R O D U C T I O N

Our perception of the environment is not a faithful registra-
tion of its physical attributes. Instead, we carve the world into
meaningful groupings or categories. This process of abstract-
ing and storing the commonalities among like-themed individ-
uals is fundamental to cognitive processing because it imparts
knowledge. For example, knowing that a new gadget is a
“camera” instantly and effortlessly provides a great deal of
information about its relevant parts and functions and spares us
from having to learn anew each time we encounter a new
individual. The ability to categorize stimuli is a cornerstone of
complex behavior. Categories are evident in all sensory mo-
dalities and range from relatively simple (e.g., color percep-
tion) to the most abstract human concepts.

Because perceptual categories often group together very
different-looking things, their representation must involve
something beyond the sort of neuronal tuning that typifies
encoding of physical appearance: gradual changes in neuronal
activity as features gradually change (e.g., shape, orientation,
direction). In fact, evidence that a human or animal has stored
a category is that behavior does not track smoothly with

changes in physical appearance: categories have sharp bound-
aries (not gradual transitions) between them and members of
the same category are treated as equivalent even though their
physical appearances may vary widely. A simple example is
crickets sharply dividing (at 16 kHz) a continuum of pure tones
into “mate” versus “bat” (a predator) (Wyttenbach et al. 1996).
Other examples include humans’ perception of the phonemes
“b” versus “p” (Lieberman et al. 1967) and the facial expres-
sions of emotion (Beale and Keil 1995).

The elaborate behavioral repertoire of advanced animals
naturally depends on more elaborate categorization abilities.
Their mental lexicon includes categories that are characterized
along multiple dimensions and are often difficult to precisely
define. In addition, advanced animals have an enormous ca-
pacity to learn and adapt. Monkeys, for example, have been
taught categories such as animal versus nonanimal (Roberts
and Mazmanian 1988), food versus nonfood (Fabre-Thorpe et
al. 1998), tree versus nontree, fish versus nonfish (Vogels
1999), and ordinal numbers (Orlov et al. 2000). Such catego-
ries could be processed in brain areas involved in object
recognition such as the inferior temporal cortex (ITC) (Desi-
mone et al. 1984; Gross 1973; Logothetis and Sheinberg 1996;
Tanaka 1996) as well as those involved in orchestrating vol-
untary, visually guided behaviors, such as the prefrontal cortex
(PFC) (Fuster 1997; Goldman-Rakic 1987; Miller 2000; Miller
and Cohen 2001). The PFC and ITC are directly connected
(Ungerleider et al. 1989; Webster et al. 1994) and both contain
neurons that often exhibit highly specific responses to complex
stimuli such as trees, fishes, faces, brushes, etc. (Bruce et al.
1981; Desimone et al. 1984; Gross et al. 1972; Miller et al.
1996; Perrett et al. 1982; Scalaidhe et al. 1999; Tanaka et al.
1991) and are influenced by experience (Booth and Rolls 1998;
Kobatake et al. 1998; Logothetis et al. 1995; Miyashita 1988;
Rainer and Miller, 2000). Whether or not their activity reflects
stimulus categories has not been clear. These neurons have not
been tested for the diagnostic characteristics of categories,
(e.g., sharp boundaries and within-category generalization);
their specificity might reflect similarities and differences in
physical appearance of the stimuli, not necessarily their cate-
gory membership.
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To evaluate the role of the PFC in visual categorization, we
trained monkeys to categorize computer-generated stimuli into
two categories, cats and dogs. A novel three-dimensional (3-D)
morphing system was used to create a large set of parametric
blends of six prototype images (3 species of cats and 3 breeds
of dogs) (Beymer and Poggio 1996; Shelton 2000). This al-
lowed us to establish a sharp category boundary between
stimuli that were physically similar yet include in the same
category stimuli that were visually dissimilar. A brief report of
these results appeared previously (Freedman et al. 2001).

M E T H O D S

Subjects

Two female adult rhesus monkeys (Macacca mulatta) weighing 6.0
and 7.5 kg were used in this study. Using previously described
methods (Miller et al. 1993), they were implanted with a head bolt to
immobilize the head during recording and with recording chambers.
Eye movements were monitored and stored using an infrared eye-
tracking system (Iscan, Cambridge, MA). All surgeries were per-
formed under sterile conditions while the animals were anesthetized
with isoflurane. The animals received postoperative antibiotics and
analgesics and were handled in accord with National Institutes of
Health guidelines and the recommendations of the Massachusetts
Institute of Technology Animal Care and Use Committee.

Recording techniques

Electrode penetration sites were determined using magnetic reso-
nance imaging scans obtained prior to surgery. The recording cham-
bers were positioned stereotactically over the lateral prefrontal cortex
such that the principal sulcus and ventrolateral prefrontal cortex were
readily accessible. Neuronal activity was isolated using arrays of four
to eight independently moveable tungsten microelectrodes (FHC In-
struments, Bowdoinham, ME). The electrodes were advanced using
custom-made screw-driven mini-microdrives (Nichols et al. 1998)
mounted on a plastic grid (Crist Instruments, Damascus, MD). Neu-
ronal activity was amplified, filtered, and stored for off-line sorting
into individual neuron records (Plexon Systems, Dallas, TX). This
allowed us to isolate an average of nearly two neurons per electrode.
We did not prescreen neurons for task-related activity such as visual
responsiveness or stimulus selectivity. Rather, we randomly selected
neurons for study by advancing each electrode until the activity of one
or more neurons was well isolated and then began data collection.
This procedure was used to ensure an unbiased estimate of prefrontal
activity.

Stimuli

A large continuous set of images was generated from three proto-
type cats and three prototype dogs (Fig. 1) with a novel algorithm
(Shelton 2000). It found corresponding points between one of the
prototypes and the others and then computed their differences as
vectors. Morphs were created by linear combinations of these vectors
added to that prototype. For more information see http://www.ai.
mit.edu/people/cshelton/corr/. By morphing different amounts of the
prototypes, we could generate thousands of unique images, continu-
ously vary shape, and precisely define one or more arbitrary category
boundaries. For most of the experiments, the images were divided into
two groups, cats and dogs, with the boundary at an equal blend of cat
and dog. Thus category membership was defined by whichever cate-
gory contributed more (�50%) to a given morph. As a result, stimuli
that were close to but on opposite sides of the boundary were visually
similar, while stimuli that belonged to the same category could be
visually dissimilar [e.g., the “housecat” (C1) and “cheetah” (C2)

prototypes]. The stimuli differed along multiple features and were
smoothly morphed, i.e., without sudden appearance or disappearance
of any feature. They were 4.2° in diameter, had identical color,
shading, orientation and scale, and were presented at the center of
gaze.

We confirmed that the morphs did indeed vary smoothly by using
an image correlation analysis. This analysis was used merely to ensure
that the morphing system functioned as designed and generated stim-
uli that that had no a priori discontinuities that the monkeys could
exploit to solve the task. A two-dimensional (2-D) correlation coef-
ficient was calculated for neighboring images at six levels of blends of
cat and dog (cat:dog: 100:0, 80:20, 60:40, 40:60, 20:80, 0:100) along
each of the nine between-category morph lines. The correlation was
calculated by computing the 2-D correlation coefficient separately for
each color plane and then averaging across planes. The correlation
coefficient between neighbors remained constant and high (�0.9)
across the entire morph space. The coefficients between stimuli di-
rectly across the cat/dog boundary did not differ from the coefficients
calculated between adjacent morphs within the same category (1-way
ANOVA, P � 0.44).

Behavioral tasks

The monkeys performed a delayed match-to-category task that
required them to judge whether two successive stimuli were from the
same category (Fig. 2). The trial began when the monkey grasped a
metal bar and fixated a small (0.3°) white spot at the center of a CRT
screen. They were required to maintain gaze within a �2° square
window around the fixation spot for the entire trial. After the initial
500 ms of fixation, a sample image was presented at the center of the
screen for 600 ms, followed by a 1,000-ms delay. Then a choice image
appeared. If the sample and choice stimuli were from the same
category (a category match), the monkeys were required to release the
lever before the stimulus disappeared 600 ms after its onset to receive
a juice reward. If the choice image was from a different category (a
category nonmatch), there was an additional brief delay (600 ms)
followed by another image that was always a match and thus required
a lever release. As a result, a category judgment was only required for
the first choice image. The second delay and match image were used
so that a behavioral response would be required on every trial. This
ensured that the monkeys were always paying attention. Because a
decision was only required for the first choice image and the forth-
coming behavioral response was predictable from the second delay
onwards, that delay and subsequent match image will not be consid-
ered further. Note that with this design, the behavioral response (lever
release) is not uniquely associated with a category (it was used to
signal “match,” not cat or dog) and, further, the monkeys could not
predict whether the first choice stimulus would require a response.
Thus any differential activity to the sample categories could not be
related to the behavioral response. A 2,000- to 3,000-ms inter-trial
interval followed correct trials. An error was defined as a lever release
to a nonmatch or failure to release to a match; breaks of fixation
were not counted among the error rates in behavioral analyses. An
additional 3,000-ms “ time-out” was added to the inter-trial interval
following an error. Monkeys typically performed �700 correct trials
per day.

The monkeys were gradually trained to categorize the images as
cats and dogs by beginning with a delayed match-to-sample task in
which the prototypes were used as samples, the match was always
identical to it, and the nonmatches were a prototype from the other
category. We then gradually included more and more morphs as
samples and chose images at increasing distances from the prototypes.
In parallel, matches were chosen from an increasingly greater distance
of morph space around the sample while respecting the category
boundary. Nonmatches were always from the other category.

During the course of training, �1,000 sample stimuli were used
from all over the morph space. This prevented monkeys from solving
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the task by simply remembering specific stimulus-response contin-
gencies. Neurophysiological recording, however, requires that a lim-
ited number of stimuli be used so that each can be repeated multiple

times and neuronal variability can be assessed. Thus for recording
experiments, we limited the samples to 54 images. This included the
six prototype images and morphs from equally spaced intervals across

FIG. 1. Organization of stimulus set. A:
the 6 prototype images and 15 morph lines.
The sample stimulus set was composed of 54
unique images: 6 prototypes (as shown), 4
images evenly placed (20, 40, 60, 80%) along
the 9 lines (in red) connecting each cat to each
dog prototype, and 2 images (at 40 and 60%)
along each of the 6 lines (in blue) between
prototypes of the same category (with respect
to the 2-class boundary). B: an example of the
morphs generated between the C1 and D1
prototypes.

FIG. 2. Task design and behavioral perfor-
mance. The trial began with central fixation (500
ms) after which a sample stimulus appeared at the
center of gaze for 600 ms. This was followed by a
1-s delay and then by a choice (Test) stimulus (600
ms). If the category of the choice matched that of
the sample, monkeys had to release a lever to the
choice stimulus within 600 ms of its presentation to
obtain a fruit-juice reward. If the choice was a
nonmatch, there was another delay interval (600
ms) followed by a presentation of a match, which
required a lever release for a reward. There were an
equal number of match and nonmatch trials and
they were randomly interleaved.
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each of the nine morph lines that connected each cat prototype to each
dog prototype (Fig. 1A). There were six levels of blends of cat and dog
(cat:dog, 100:0, 80:20, 60:40, 40:60, 20:80, 0:100) along the nine
morph lines that crossed the two-category boundary (the red lines in
Fig. 1A) and two levels along the six within-category morph lines
(60:40, 40:60; the blue lines in Fig. 1A). To prevent monkeys from
learning to memorize specific stimulus-response contingencies during
the recording experiments, the choice stimuli were 100 randomly
generated morphs from each category that were randomly paired with
sample stimuli of the appropriate category. To ensure that category
judgment errors were due to confusion over the sample category, the
choice stimuli unambiguously belonged to a given category: they
were always chosen to be at a distance of �20% from the boundary.

The monkeys’ categorization abilities were further examined with
separate psychophysical tests employing an additional 14 morphs that
were equally and tightly spaced (6.67% intra-stimulus distance) along
each of the morph lines that crossed a category boundary. This
allowed for a more precise description of the monkeys’ ability to
categorize stimuli near the category boundary. This task was identical
in all timing and behavioral events except that the monkeys were
randomly rewarded on trials in which the sample stimulus was very
close to the category boundary (�10% difference). As monkeys were
not shown morphs of closer than 10% distance from the category
boundary during training, feedback during psychophysical testing
was withheld on trials where such stimuli were presented as samples
to discourage learning and changes in performance during those
sessions.

To test the effects of learning on neuronal activity, we trained a
monkey to re-categorize the cat and dog images into three new
categories. Two new category boundaries were defined that were
orthogonal to the original two-category boundary (Fig. 1A). This
resulted in three new classes that each contained morphs centered
around one cat prototype and one dog prototype. The same 54 sample
stimuli were used for neurophysiological recording under the two and
three-category schemes. As in the two-category experiment, the
choice stimulus set consisted of 100 randomly generated morphs from
each category that had a maximum component of 20% from each of
the other two categories.

Data analysis

Neuronal activity level was calculated in four time epochs: base-
line, sample presentation, first delay, and first choice stimulus presen-
tation. Baseline neuronal activity was averaged over the 500 ms of
fixation preceding sample presentation. Sample period activity was
averaged over an 800-ms epoch beginning 100 ms after sample onset
to account for the latency of PFC neuronal responses and included the
first 300 ms following sample offset to include any activity related to
that event. Delay activity was assessed over an 800-ms epoch begin-
ning 300 ms after sample offset and ending 100 ms after first choice
stimulus onset. Activity to that choice stimulus was averaged over an
epoch that began 100 ms after its onset and ended 2 SD before the
monkeys’ average reaction time during each recording session to
exclude any effects related to the execution of the behavioral re-
sponse.

Category information in neuronal activity was assessed using sev-
eral methods. We computed an index of category tuning by calculat-
ing each neuron’s average firing rate difference to pairs of sample
morphs from the same category (within-category difference, WCD)
and its average difference to samples from different categories (be-
tween-category difference, BCD) using images from the morph lines
that crossed the category boundary. The WCD was defined by com-
puting the absolute difference between the 100 and 80% morphs and
between the 80 and 60% morphs for both categories and averaging
these values. The BCD was computed by averaging the across-
boundary differences between the 60% cats and 60% dogs. As a
result, the distance between stimuli in morph space was identical

(20%) for the BCD and WCD comparisons. A standard index was
computed for each neuron by dividing the difference between their
BCD and WCD values by their sum. This index can have values
ranging from �1 to 1. Positive values indicate a larger difference
between categories, whereas negative values reflect larger differences
within the categories than between categories. BCD and WCD values
were computed for neurons recorded during the three-category task in
a similar fashion by determining differences in activity to samples that
differed by 20% along the morph lines that crossed the three-category
boundaries (Fig. 1). To ensure that the previously learned two-cate-
gory scheme did not contribute to the values obtained when calculat-
ing category effects in the three category scheme, we excluded from
this analysis the morph lines that crossed both the two- and three-
category boundaries (e.g., the morph line connecting cat prototype 1
and dog prototype 2).

In addition to computing an index, we also compared between and
within category differences by using a receiver-operating character-
istics (ROC) analysis (Green and Swets 1966; Tolhurst et al. 1983;
Vogels and Orban 1990). The ROC analysis measures the degree of
overlap between two distributions of values. It has several advantages.
First, it makes no assumptions about the two distributions, A and B
and thus returns an unbiased estimation of overlap. Second, it can be
interpreted as the performance of an ideal observer in a two-way
forced choice task; values of 0.5 indicate 50% correct classification
(guessing) while values of 0 or 1 indicate error-free classification.
Third, it is independent of neuronal firing rate and number of obser-
vations. While the category index described above explicitly tests for
sharp tuning across the category boundary, the ROC value gives a
general measure of the degree of category selectivity.

To determine the time course of category information in neuronal
activity, we computed the ROC area within a time bin of 200 ms that
was slid in 10-ms steps. We began 500 ms prior to sample stimulus
onset and ended 100 ms following the first choice stimulus onset. This
was computed for all neurons that were “category selective” (accord-
ing to a 2-tailed t-test comparing the average response to cats and
dogs, evaluated at P � 0.01) during the sample and/or delay epochs.

The latency for neuronal activation (irrespective of category infor-
mation) was determined by compiling the average histogram of firing
rate values for all responsive neurons (i.e., neurons that showed
significantly different activity during the sample and/or delay periods
compared with baseline, evaluated by 2-tailed t-test at P � 0.01.) This
average histogram was smoothed with a 30-ms Gaussian window, and
the latency was defined as the point of maximum inflection (deter-
mined by computing the 2nd derivative at all points along the histo-
gram) of this curve following sample onset.

Because neurons have a wide range of firing rates, these firing rates
were normalized when computing histograms of average effect size
across the population. For each neuron, the mean firing rates at each
of the six steps from the cat to dog prototypes were computed. Then,
the range of firing rates for each neuron were rescaled according to the
minimum and maximum values across those six groups such that each
neuron’s minimum and maximum rate was 0.0 and 1.0, respectively.
This allowed each neuron’s range of modulation to contribute equally
to the population average. Similar results were obtained by conducting
these analyses using raw firing rates. Category information was
not limited to a specific range of activity; as our single neuron
examples will illustrate, it was evident in neurons exhibiting both low
and high firing rates.

R E S U L T S

Behavioral data

CATEGORY JUDGMENTS. The monkeys were very accurate at
the two-category judgments. During the recording sessions,
performance was high (�90% correct), even when the samples
were close to the category boundary; the monkeys classified
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dog-like cats (60:40 cat:dog) correctly �90% of the time, and
misclassified them as dogs only 10% of the time and vice-versa
(Fig. 3). The results of psychophysical tests with more closely
spaced morphs are shown in Fig. 4A. Even very near the
boundary, when stimuli were very similar to (only 3% different
from) the other category (i.e., a 53.3% cat or dog), the monkeys
still performed significantly above chance (�65%, chance �
50%). Thus even with closely spaced morph images, the sud-
den change in behavior characteristic of category representa-
tions were evident in behavior.

Figure 4B shows the performance of monkey A after it had
been trained to re-categorize the same images under the three-
category scheme. Performance here was somewhat lower than
during the two-category task. This is presumably because there
were two boundaries in the three-category task and thus a
higher percentage of stimuli were close to the border (the data
in the figure are collapsed across the boundaries). Still, the
sharp drop-off in performance indicative of a category repre-
sentation was evident; monkeys continued to perform above
chance for morphs that were only �3% different from the
boundary. The greater difficulty of the three-category task was
also evident in the monkey’s behavioral reaction times. They
were significantly longer during the three-category task (aver-
age � 307 ms) than the two-category task (264 ms, t-test at
P � 0.01).

STIMULUS FEATURES USED FOR CATEGORIZATION. To explore
which features monkeys tended to focus on when categorizing
the images into cats and dogs, we conducted further psycho-
physical testing. In one set of experiments, we removed the
requirement to maintain central fixation (by removing the
fixation point) and allowed the monkeys to freely gaze at the
images. Given the close link between attention and gaze during
unconstrained viewing, the assumption was that monkeys
would spend more time gazing at the features that they were
using to define the categories.

It seemed that the monkeys were not focusing on a single
feature to categorize the images. Even though the sample
presentation was brief (600 ms), they typically made several

saccades while viewing the stimulus. One monkey made an
average of 3.45 saccades and the other monkey averaged 2.25
saccades during sample presentation (defined as the number
eye movements exceeding 50°/s, equivalent to 0.5° of move-
ment in adjacent 10-ms time bins). Interestingly, the two mon-
keys seemed to use different combinations of features to cat-
egorize the images. One monkey tended to look toward the tail
of the sample images; its gaze was on average 1.46° to the left
and 0.60° below the center of the screen. The other monkey
tended to direct its gaze toward the head region; on average, its
gaze was 0.57° to the right and 1.16° above central fixation.
Figure 5A shows representative traces from one trial for each
monkey. The gaze patterns for the two monkeys were signif-
icantly different from one another (along both the horizontal
and vertical axes, t-tests, P � 0.01).

We also tested the monkeys’ ability to categorize the images
after removing the “heads” or “ tails” of the morph stimuli and
then interleaving them with nondegraded samples. The as-
sumption here was that if the monkey was relying on a single
feature on the head or tail of the image, its removal should
cause a decrease in categorization performance to chance. This
was not the case. As shown in Fig. 5B, we found that the
monkeys’ performance remained high (�80% correct) when
either the head or tail was absent. This pattern of results
suggests that each monkey attended to a unique combination of
features and that neither of the monkeys used a single stimulus
feature to categorize the images.

Neuronal data
BASIC PROPERTIES. A total of 395 lateral prefrontal cortex
neurons were recorded from three hemispheres of two mon-
keys during performance of the two-category DMC task (130
from monkey A, 265 from monkey B, Fig. 6). Visual respon-
siveness was evaluated by comparing the activity in the sample
and delay intervals to baseline activity using two-tailed t-tests
(evaluated at P � 0.01). Based on this criterion, 259/395 (66%,
113 from monkey A, 146 from monkey B) of neurons were
activated during one or more task intervals. The onset of

FIG. 3. Average performance of both monkeys during neu-
rophysiological recordings for the 2-category task. Dark grey
bars indicate the percent of samples classified as cat and light
grey bars the percent classified as dog.
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neuronal responsiveness across the population of responsive
PFC neurons occurred at �100 ms following sample stimulus
onset (METHODS).

An initial assessment of neuronal category selectivity was
made with a t-test of the activity to all cat stimuli versus all dog
stimuli (evaluated at P � 0.01). This revealed that nearly a
quarter of all (randomly selected) neurons (96/395, 24%, 60
and 36 in monkeys A and B, respectively) showed a significant
difference in their overall activity to cats versus dogs in the
sample and/or delay intervals (74 sample, 51 delay). Many
neurons (78/395, or 20%; 67 sample, 32 delay) also showed a
significant effect of the individual samples (i.e., were stimulus-
selective) according to a one-way ANOVA (with the 54 sample
stimuli as the factor; evaluated at P � 0.01). A majority of
these stimulus-selective neurons also showed an overall effect

of category (56/78, or 72%; 46 sample, 21 delay, t-test, P �
0.01). Similar numbers of category selective neurons preferred
cats (39/74 sample, 27/51 delay) as dogs (35/74 sample, 24/51
delay). In both monkeys, there was a greater incidence of cate-
gory-selective neurons in the sample than the delay interval (mon-
key A: 48 sample, 31 delay; monkey B: 26 sample, 20 delay).

The activity of many neurons showed a sharp differentiation
between the two categories that mirrored the monkeys’ behav-
ior. That is, they showed relatively large differences in activity
to samples from different categories and relatively similar
activity to samples from the same category. Two examples of
single neurons are shown in Figs. 7, A and B. They show each
neuron’s average activity to all samples at different blends of
cats and dogs. Both seem to encode the category of stimuli.
Note that their activity was significantly different to dog-like

FIG. 4. Psychophysical performance for the 2- and 3-category
tasks. For both the 2-category (A) and 3-category (B) tasks, the mon-
keys’ error rates did not increase linearly as stimuli approached the
category boundary but changed more sharply at the category boundary.
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(60%) cats and cat-like (60%) dogs (t-test, P � 0.001), but
there was no difference in activity between these stimuli and
their respective prototypes (P � 0.1).

These effects were also evident in the average activity across
the population of all stimulus-selective neurons. For this anal-
ysis, we chose neurons that were stimulus selective not cate-
gory selective per se (ANOVA with the individual samples as
a factor, P � 0.01, n � 55 for the sample interval, 29 for the

delay, excluding neurons with mean firing rates �2 Hz, as they
can produce spurious results when normalized). Figure 8
shows the mean normalized firing rates for the six levels of
morphs. Each neuron’s preferred category was determined by
the category of the single sample stimulus (of 54) that evoked
the maximal firing rate, computed separately for the sample
and delay intervals. By determining the preferred category by
a single stimulus instead of the average across all category
members, we ensured that this test was not biased toward
finding a category effect. During both time epochs, there was

FIG. 5. Eye movements and degraded stimuli during behavioral testing. A:
an example of monkey A’s (left) and monkey B’s (right) eye movements during
the sample period of a single trial superimposed on the sample stimulus shown
on that trial. Monkeys were allowed to gaze freely at the stimuli during
behavioral testing as fixation was not required. During neurophysiological
recordings, monkeys were always required to maintain fixation within a �2°
window. B: behavioral performance to degraded stimuli.

FIG. 6. Anatomical location of recording
sites and category selective neurons in both mon-
keys. A, anterior; P, posterior; D, dorsal; V,
ventral. � and E, recording sites at which cat- or
dog-selective neurons were found, respectively.
●, each location at which no category selective
neurons were encountered. There was no obvious
topography to task-related neurons.

FIG. 7. Single neuron examples (2-category task). A: the average activity of
a single neuron that showed greater activity to dogs during the memory delay.
The histogram traces represent the neuron’s average activity to stimuli at each
of the 6 morph levels. B: the average activity of a single neuron that showed
greater activity to cats during the late sample and early delay period.
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a significant difference between the categories (P � 0.01) but
no differences between the different morph levels within each
category (P � 0.6, 2-way ANOVA with category and distance
from the category boundary as factors).

QUANTIFICATION OF CATEGORY EFFECT. To quantify the effect
of category membership on the neuronal population, we com-
puted a category index that reflected each neuron’s average
difference in activity to samples across the category boundary
versus its difference to samples that were from the same
category (see METHODS). Positive values indicate greater differ-
ences across the category boundary than within each category
and negative index values indicate the opposite.

We examined all stimulus-selective neurons irrespective of

whether they were category selective per se (n � 78, 67
sample, 32 delay). The distributions of category index values
for the sample and delay periods are shown in Fig. 9. During
both epochs, mean category index values were significantly
greater than zero, i.e., the distribution was shifted toward
category tuning (sample: 0.09, delay: 0.16, 1-tailed t-test, P �
0.001). For the subset of stimulus selective neurons that were
category selective (n � 46 sample, 21 delay), the category
indices were significantly greater (more shifted toward cate-
gory tuning) during the delay than the sample interval (index �
0.12 sample, 0.21 delay, 2-tailed t-test, P � 0.04). Similar
comparisons were also made by computing ROC values, which
reflect how well an ideal observer would do at categorization
using each neuron’s firing rate (see METHODS). Across the
population of stimulus selective neurons, the average ROC
value was 0.59 (range: 0.50–0.75) in the sample interval and
0.59 in the delay (range: 0.50–0.82).

These analyses demonstrate that a significant degree of
category information was evident even across the entire pop-
ulation of stimulus-selective neurons. The average index or
ROC values obtained were somewhat modest because activity
was averaged across an entire trial epoch and across all stim-
ulus-selective neurons. As will be shown next, the strength of
category signals varied widely with individual neurons and
with time; individual neurons could convey very strong cate-
gory signals at particular points in the trial.

TEMPORAL CHARACTERISTICS OF CATEGORY INFORMATION. To
examine the temporal dynamics of the representation of cate-

FIG. 9. Distribution of 2-category index values across the population of 67
and 32 stimulus selective neurons during the sample (A) and delay (B) epochs,
respectively. Positive values indicate larger differences in neuronal firing to
samples across the category boundary than within a category. Negative values
indicate larger differences within category than between categories.

FIG. 8. Average neuronal response to preferred and nonpreferred categories
during the sample (A) and delay (B). Each bar represents the population’s
average normalized response to stimuli at each of the 6 morph levels. The error
bars represent SE.
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gory information in PFC activity, we used a sliding ROC
analysis (see METHODS). For this analysis, we included neurons
whose average activity in the sample and/or delay intervals was
significantly category-selective (t-test on activity to all cats vs.
all dogs, evaluated at P � 0.01, n � 96 neurons).

Figure 10A shows the ROC values for each neuron in 10-ms
time steps. The ROC values are sorted by their magnitude
separately for each time bin to better illustrate the number of
neurons exhibiting ROC values �0.5 (chance) at each moment
in time. This revealed that, in general, more neurons conveyed
category signals late in the sample epoch than during the delay
interval but that the strongest category signals occurred in the
late delay and early choice presentation epoch. Figure 10
indicates that there was a greater number of neurons with
moderate or small ROC values for the time bins during the
sample epoch (i.e., there are more “ foothills” leading up the
“peaks” ) but that the highest ROC values occurred during the
late delay/choice presentation (the “peaks” are highest then).

EFFECTS OF LEARNING ON CATEGORY REPRESENTATIONS. As our
monkeys had no prior experience with cats and dogs, it seemed
likely that the category information in the PFC was acquired
through learning. To test the effects of learning on category
representations, we retrained one monkey with the samples
reassigned to three new categories (see Fig. 1 and METHODS).
We then recorded from 103 neurons at similar depths and
locations as those recorded during the two-category task. The
incidence of neuronal responsiveness and stimulus selectivity
during the three-category task was similar to that during the
two-category task: �63% (65/103) of neurons were visually
responsive (t-test vs. baseline, as in the preceding text, P �
0.01) and �23% (24/103, 14 sample, 14 delay) were stimulus
selective (ANOVA with stimulus as factor, P � 0.01).

An example of a neuron recorded during the three-category
task is shown in Fig. 11. It showed a significant effect of
category during the delay period when the data were sorted

according to the new, currently relevant, three-category
scheme (ANOVA, P � 0.001); it distinguished one of the
categories from the other two (Fig. 11A). By contrast, when the
data were sorted according the old (now irrelevant) cats and
dogs category scheme (Fig. 11B), there was no significant
difference (ANOVA, P � 0.74).

To test for these effects in this population of neurons, we
first examined all those that were stimulus-selective (n �
24/103, 14 sample, 14 delay, ANOVA, P � 0.01). When the
category index was computed using the old (now irrelevant) cat
and dog categories, there was no evidence of category effects;
the two-category index was not significantly greater than zero
for the sample interval (2-category index � 0.01, 1-tailed
t-test, P � 0.5) nor the delay (2-category index � �0.10,
1-tailed t-test, P � 0.9). However, when the category index
was computed using the new (relevant) three-category bound-
aries, a significant category effect was observed in the delay
(3-category index �0.16, 1-tailed t-test, P � 0.008). As we
found for the two-category task, three-category tuning was
stronger during the delay than the sample interval (2-tailed
t-test, P � 0.04). In fact, we did not detect significant category
tuning across the population of stimulus selective neurons
during the sample interval (3-category index � �0.01, P �
0.5), although it was detected when we computed the index for
all neurons recorded during the three-category task (n � 103,
see following text).

The same pattern of effects was observed across the entire
population of neurons. Figure 12 shows the distribution of the
category indices for all 103 (randomly sampled) cells recorded

FIG. 10. Time course of category selectivity. Category selectivity across
the population of 96 category selective neurons was computed using a sliding
receiver-operating characteristics (ROC) analysis (see METHODS). The ROC
values for all 96 neurons were sorted from minimum to maximum for each
time bin independently. Higher ROC values indicating stronger category
tuning. The black lines correspond (from right to left) to sample onset, offset,
and choice-stimulus onset. Time is aligned to the end of the 200-ms sliding
window (i.e., the values at time � 0 indicates the ROC values during the �200
to 0 time epoch relative to sample onset).

FIG. 11. An example of a single neuron recorded during the 3-category task
that showed selectivity for the newly learned 3 categories (A) but not the old
(now irrelevant) 2 categories (B).
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during the three-category task. The indices computed using the
three-category scheme revealed significant category informa-
tion (i.e., the distribution was shifted to the right) for both the
sample interval (Fig. 12A, 3-category index � 0.065, 1-tailed
t-test, P � 0.0007) and for the delay (Fig. 12B, 3-category
index � 0.08, 1-tailed t-test, P � 0.0005). By contrast, when
the indices were computed using the two-category scheme,
there were no significant category effects during the sample
(Fig. 12C, 2-category index � �0.02, 1-tailed t-test, P � 0.83)
or the delay interval (Fig. 12D, 2-category index � �0.03,
1-tailed t-test, P � 0.82). Thus while information about the
three-category scheme was evident in the population of PFC
neurons, we could no longer detect information about the
previously learned, now-irrelevant, cat and dog categories.

CATEGORY MATCH/NONMATCH EFFECTS. When the choice stim-
ulus was presented, the monkeys needed to categorize it and
then decide whether or not its category matched that of the
sample. Both signals were present in neuronal responses to the
choice stimulus. We evaluated activity in this interval with a
two-way ANOVA (factor 1: choice stimulus category, factor 2:
match vs. nonmatch, evaluated at P � 0.01). Just more than 9%
(37/395) of the entire population of PFC neurons reflected the
category of the choice stimulus while 11% (43/395) reflected
its match/nonmatch status. More than two-thirds of the latter
neurons (29/43) showed an effect of matching/nonmatching
that was similar regardless of whether the choice stimulus was
a cat or dog (main effect of match/nonmatch, no interaction
with choice stimulus category). An example of a neuron that
exhibited greater activity to matches is shown in Fig. 13A, and

an example of a neuron showing greater activity to nonmatches
is shown in Fig. 13B. This activity could have encoded the
monkeys’ decisions about the match/nonmatch status of stimuli
and/or the motor aspects of the task (the lever release to
matches). The remaining third of these neurons (14/43) showed
an interaction between the match/nonmatch status and the
category of the choice stimulus (P � 0.01). In other words,
they showed match/nonmatch effects that were limited, or
much stronger, to one of the categories. An example of a “cat
match” neuron is shown in Fig. 13C. For match/nonmatch
selective neurons, a similar number preferred matches (22/43
or 51%) as nonmatches (21/43 or 49%).

ANALYSIS OF ERROR TRIALS. For insight into neuronal corre-
lates of the monkey’s errors, we compared category effects and
match/nonmatch effects on correctly performed trials versus
those in which monkeys made errors in category judgments.
For these analyses, we included neurons that showed signifi-
cant effects on correct trials. Figure 14 shows the results of
these comparisons. Category information was evident during
the sample interval on both correct and error trials; the average
activity to the preferred versus nonpreferred category was
significantly different for both types of trials (t-test, P � 0.001,
Fig. 14A). But category information seemed to be lost in the
delay. A significant difference between the average activity to
the two categories was evident on correct trials (P � 0.001) but
not on error trials (P � 0.79, Fig. 14B). Match/nonmatch
effects also depended on whether the trial was correctly per-
formed or not. For these analyses, the choice stimulus status
(match or nonmatch) that elicited the greater activity on correct

FIG. 12. Distribution of 3-category
(A: sample, B: delay) and 2-category
(C: sample, D: delay) index values
across the entire population of 103 neu-
rons recorded during the 3-category
task. The index can range from �1 to 1.
Positive values indicate larger differ-
ences in neuronal firing between cate-
gories than within categories. Negative
values indicate larger differences
within categories than between catego-
ries. **, significantly positive values of
the category index (1 tailed t-test, P �
0.001).
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trials was termed the “preferred condition.” For all neurons that
showed pure match versus nonmatch effects (n � 25, i.e.,
match vs. nonmatch factor: P � 0.01, choice-category and
interaction factors: P � 0.01), there was a significant differ-
ence (P � 0.001) in average activity to the preferred and
nonpreferred conditions on correct trials. On error trials, how-
ever, the pattern reversed; there was an increase in activity to
nonpreferred over preferred conditions that reached signifi-
cance at P � 0.05 (Fig. 14C). This is presumably because the

monkeys mistakenly responded to nonmatches as if they were
matches.

D I S C U S S I O N

We report that neurons in the PFC, a brain region central to
many visual behaviors, exhibited properties that mirrored the
behavioral characteristics of perceptual categories. They made
sharper distinctions between stimuli from different categories
than between stimuli from the same category, irrespective of

FIG. 14. Comparison of neuronal selectivity on correct and error trials. **,
significance (evaluated by a t-test) at P � 0.001. *, significance at P � 0.05.
The average response of all category selective neurons during the sample (n �
74; A) and delay (n � 51; B) phases is shown for correct and incorrect trials.
Each neuron’s preferred category was determined by the category that evoked
greater average firing rates during correct trials. C: average activity to choice
stimuli for all match/nonmatch selective neurons (n � 25 neurons with only a
significant effect of match/nonmatch) for correct and incorrect trials. Each
neuron’s preferred response (match or nonmatch) was determined according to
the group that elicited greater average firing rates during correctly executed
trials.

FIG. 13. Single neuron examples of match/nonmatch effects. Neuronal
activity is grouped according to the category of the choice stimulus and
whether or not the category of the choice stimulus matched the category of the
sample. A: an example of a neuron that showed enhanced activity to category
matches. B: enhanced activity to category nonmatches. C: a neuron that
showed enhanced activity to a cat choice stimulus when it was a match and a
suppressed response to a cat nonmatch. It did not differentiate between match
and nonmatch trials when the choice stimulus was a dog.
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their relative physical similarity. This explicit encoding of
category membership in the activity of single neurons did not
have to be the case. In principle, categories might have only
been reflected on the ensemble level, as an emergent property
of neurons encoding different defining features. Our results
illustrate instead that familiar categories are reflected on the
single-neuron level, much as physical attributes of stimuli are.
This ability to carve category membership into the tuning of
single neurons might allow for the quick and effortless classi-
fication of familiar objects. We also observed neuronal corre-
lates of category match/nonmatch effects, suggesting a role for
the PFC in these judgments and/or in issuing resulting motor
commands. Finally, the observation that neuronal correlates of
categories and category judgments waned or changed on error
trials suggests that PFC activity was directly related to task
performance.

The presence of category information in the PFC makes
sense given its position at the apex of the perception-action
cycle (Fuster 1990). Categories are defined by their functional
relevance. Therefore they might be strongly represented in a
brain area that mediates the functions needed to transform
perceptions into voluntary actions, functions such as the inte-
gration of temporally separated events (Fuster et al. 2000), the
acquisition and representation of behavior-guiding rules
(Asaad et al. 1998; Wallis et al. 2001; White and Wise 1999)
and visuomotor decisions (Kim and Shadlen 1999). The rela-
tive specialization of PFC in guiding behavior is reflected in
the fact that its damage or reversible inactivation in monkeys
cause deficits in performance of tasks demanding attention,
working memory and response inhibition (Dias et al. 1996;
Funahashi et al. 1993; Goldman and Rosvold 1970; Goldman
et al. 1971; Gross and Weiskrantz 1962; Mishkin 1957; Mish-
kin and Manning 1978; Mishkin et al. 1969; Passingham 1975)
but usually spares more purely perceptual functions such as
object recognition, visual long-term memory, and “high level”
visual analysis of form.

But an important contribution must also come from brain
areas that mediate these visual functions, such as the ITC. Its
damage causes deficits in visual discrimination, recognition,
and learning (Blum et al. 1950; Kluver and Bucy 1938, 1939;
Mishkin 1954, 1966; Mishkin and Pribram 1954) and category-
specific agnosias (e.g., for faces) in humans (Damasio et al.
1982). Since the seminal work of Gross and coworkers, who
reported a small population of “ face cells,” numerous studies
have shown that ITC neurons show selectivity for objects that
cannot be explained by sensitivity to low-level features, such
as orientation or color (Desimone et al. 1984; Gross et al. 1972;
Perret et al. 1992; Kobatake and Tanaka 1994; Tanaka et al.
1991). There has even been some recent evidence that suggests
that these neurons play a direct role in categorization. Vogels
(1999) recorded from the ITC in monkeys trained to categorize
stimuli as tree versus nontree or fish versus nonfish and found
that many neurons were selectively activated by the trained
class (photographs of trees or fish) but not by distracter objects
(photos of household objects or scenes containing neither trees
nor fish). Kreiman et al. (2000) recorded from medial temporal
lobe neurons in epileptic human patients while they classified
stimuli into nine categories (e.g., faces, cars, food) and found
neurons that selectively responded to stimuli from one of the
categories. However, it has not been clear whether ITC neu-
ronal selectivity encodes the category membership of stimuli,

their physical appearance or some combination of these two
factors. With a large, amorphous set of stimuli (such as trees or
food), the category boundaries are unknown and the sharp
transitions that are diagnostic of categories cannot be evaluated
independently of stimulus similarity. Hence, neuronal selectiv-
ity for, say, trees could reflect the fact that trees look more like
one another than other stimuli. Our results indicate that PFC
neurons can convey information about the category of stimuli
largely irrespective of their physical appearance.

The relative roles of the PFC and ITC in perceptual catego-
rization remain to be determined. A recent theory of object
recognition suggests that category tuning in the PFC could
arise from converging inputs from ITC neurons that are stim-
ulus, but not category, tuned (Riesenhuber and Poggio 2000).
In this model, category-tuned neurons perform a weighted sum
of the inputs from neurons broadly tuned for individuals fol-
lowed by a thresholding operation. This suggests a greater role
for the PFC in the explicit representation of categories. An-
other possibility is that category information is “ loaded” into
the PFC from long-term storage in the ITC. A recent study by
Tomita et al. (1999) suggested that recall of long-term visual
memories involved top-down signals from the PFC that acti-
vate representations stored in the ITC. Similar mechanisms
might mediate the retrieval of category information stored in
the ITC.

In sum, our results have provided insight into how percep-
tual categories and category-related behaviors are encoded in
the PFC, a brain area that receives the outputs of sensory cortex
and helps mediate voluntary action. How and whether category
membership is encoded in sensory systems and the respective
roles of the PFC and visual areas like the ITC in representing
and storing category information remains to be determined.
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